Description

The μ PD27C256 is a 262,144-bit ultraviolet erasable and electrically programmable read-only memory utilizing CMOS double-polysilicon technology. The device is organized as 32K words by 8 bits and operates from a single $+5V\pm10\%$ power supply. All inputs and outputs are TTL-compatible. The μ PD27C256 has single location programming, three-state outputs and is pin-compatible with the 27256 EPROM. It is available as a 28-pin DIP.

The μ PD27C256 is available in a cerdip package with a quartz window as an ultraviolet (UV), erasable EPROM, or in a plastic package as a one-time-programmable (OTP), non-erasable EPROM.

Features

- ☐ 32K-word by 8-bit organization
- ☐ Ultraviolet erasable and electrically programmable
- ☐ Single location programming
- ☐ Programmable with single pulse
- Low power dissipation: 158 mW/MHz (active) 1.05μW (standby)
- ☐ Input/output TTL-compatible for reading and programming
- ☐ Single +5V ±10% power supply
- ☐ Three-state outputs
- ☐ Pin-compatible with µPD27256 EPROM
- ☐ CMOS double-polysilicon technology
- ☐ 28-pin DIP
- ☐ 3 performance ranges:

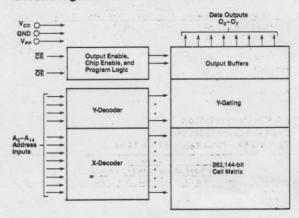
		Power Supply		
Device	Access Time	Active	Standby	
μPD27C256-20	200ns	30mA	100μΑ	
μPD27C256-25①	250ns	30mA	100μΑ	
μPD27C256-30	300ns	30mA	100μΑ	

Note: Available as either UV or OTP.
OTP version is preliminary.

Pin Configuration

Vpp [1	5		V _{cc}
A,2 [2		27	A14
A, C	3		26	D A,,
A, C	4		25	J A.
A _s C	5		24	A.
A ₄ C	6	198	23	A
A, [7	2	22	D OE
A ₂	8	05	21	A10
A, C	9	3	20	D CE
A, C	10		19	0,
0, [11		18) O.
0, [12		17	0.
0, [13		16	0.
GND [14		15	0,

Pin Identification


Pin				
No.	Symbol		Description	
1	Vpp		Program Voltage	
2-10, 21, 23-27	A ₀ -A ₁₄ .	1-1-5	Address Inputs	
11-13, 15-19	00-07	***	Data Outputs	
14	GND		Ground	Algo-
20	CE		Chip Enable	
22	ŌĒ		Output Enable	
28	Voc		+5V ±10% Power Supply	

Mode Selection

Mode Pins	CE (20)	ŌĒ (22)	V _{pp} (1)	V ₀₀ (28)	Outputs (11-13, 15-19)
Read	VIL	VIL	Voc	Voc	Dout
Standby	- V _{IH}	. X	Voc	Vcc	High-Z
Program	V _{IL}	VIH	Vpp	Vcc	DiN
Program Verify	VIL	V _{IL}	Vpp	Voc	Dout
Program Inhibit	VIH	X	Vpp	Voc	High-Z

Note: X can be either VIL or VIH

Block Diagram

Absolute Maximum Ratings*

Operating Temperature, Tops	-10°C to +80°C		
Storage Temperature, T _{STQ}	-65°C to +125°C		
Output Voltage, VoH	-0.6V to V _{CC} +0.6		
Input Voltage, VIH	-0.6V to Vcc +0.6V		
Supply Voltage, V _{CC}	-0.6V to +7V		
Program Voltage, V _{PP}	-0.6V to +22V		

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A

http://club100.org

Scan

By: Don Fox sysop@atomicfrog.com

"2 wrongs do not make a right, but 3 rights make a left turn"